
Iterators 2
Summary: Iterators are used by algorithms to move through containers. The sim-
plest iterators are common pointers as shown in Section 1.3.4. This chapter describes
different types of iterator and their properties in detail.

A preliminary remark: iterators closely cooperate with containers. A parallel presen-
tation of iterators and containers in a sequential text is however difficult and probably
not very clear, and for this reason the containers of the STL are described only in the
following chapter. In order to refer as far as possible only to previously explained
issues, certain aspects of iterators which can only be understood with a knowledge
of containers are temporarily left out. They will be considered at the end of Chapter
3.

Essential properties for all iterators are the capabilities mentioned on page 7 of
advancing (++), of dereferencing (*), and of comparison (!= or ==). If the itera-
tor is not a common pointer, but an object of an iterator class, these properties are
implemented by means of the corresponding operator functions:

// scheme of a simple iterator:
template<class T>

class Iterator {

public:

// constructors, destructor

bool operator==(const Iterator<T>&) const;

bool operator!=(const Iterator<T>&) const;

Iterator<T>& operator++(); // prefix
Iterator<T> operator++(int); // postfix
T& operator*() const;

T* operator->() const;

private:

// association with the container ...
};

The operator -> allows you to use an iterator in the same way as a pointer. For
a vector container, one could obviously imagine that the iterator should also have a

30 ITERATORS

method operator--(). Different reasonable and possible capabilities of iterators
are discussed further below.

The corresponding implementations of the lines beginning with the comment
symbol (//) depend on the container with which the iterator is to work. The dif-
ference with a normal pointer has already been seen in Section 1.4 which shows an
iterator working with a list. The iterator remembers the element of the list to which
it points in a private pointer variable current (see page 12). Each element of the
list contains Data and has a variable that points to the following element.

2.1 Iterator properties
2.1.1 States

Iterators are a generalization of pointers. They allow you to work with different
containers in the same way. An iterator can assume several states.

• An iterator can be generated even without being associated with a container. The
association with the container is then made at a later stage. Such an iterator cannot
be dereferenced. A comparable C++ pointer could, for example, have the value 0.

• An iterator can be associated with a container during generation or at a later stage.
Typically – but not compulsorily – after initialization it points to the beginning of
the container. The method begin() of a container supplies the starting position.
If the container is not empty, the iterator can in this case be dereferenced. Thus,
it can be used to access an element of the container. With the exception of the
end() position (see next point) the iterator can be dereferenced for all values that
can be reached with the ++ operation.

• In C++ the value of a pointer which points to a position directly past the last
element of a C array is always defined. Similarly, the method end() of a container
always returns an iterator with exactly this meaning, even if the container is not
an array but, for example, a list. This allows you to deal with iterator objects
and pointers to C++ basic data types in the same way. A comparison of a current
iterator with this past-the-end value signals whether the end of a container has
been reached. Obviously, an iterator which points to the position past the end of a
container cannot be dereferenced.

2.1.2 Standard iterator and traits classes
One essential advantage of templates is the evaluation of type names at compile
time. To use type names that belong to iterators in a program without having to look
into the internals of the iterator, it is specified that each iterator of the C++ Standard
Library makes certain type names publicly available. The same principle also applies
to containers. The slist class on page 12 provides such type names. Traits classes
are a tool for exporting the type names of an iterator class:

ITERATOR PROPERTIES 31

template<class Iterator>

struct iterator_traits {

typedef typename Iterator::difference_type

difference_type;

typedef typename Iterator::value_type value_type;

typedef typename Iterator::pointer pointer;

typedef typename Iterator::reference reference;

typedef typename Iterator::iterator_category

iterator_category;

};

The question arises as to why this task cannot be fulfilled directly by an iter-
ator class itself. It can – in most cases. The algorithms of the C++ Standard Li-
brary should, however, be able to work not only on STL containers that provide type
names, but also on simple C arrays. Iterators working on such arrays are, however,
simply pointers, possibly to basic data types such as int. An iterator of type int*
can certainly not provide any type names. To ensure that a generic algorithm can
nevertheless use the usual type names, the above template is specialized for point-
ers:

// partial specialization (for pointers)
template<class T>

struct iterator_traits<T*> {

typedef ptrdiff_t difference_type;

typedef T value_type;

typedef T* pointer;

typedef T& reference;

typedef random_access_iterator_tag iterator_category;

};

The iterator category is explained from page 33 onward. In order to make life
easier for programmers, the C++ Standard Library specifies one standard data type
for iterators from which each user-defined iterator can inherit:

namespace std {

template<class Category, class T,

class Distance = ptrdiff_t,

class Pointer = T*,

class Reference = T&>

struct iterator {

typedef Distance difference_type;

typedef T value_type;

typedef Pointer pointer;

typedef Reference reference;

typedef Category iterator_category; // see Section 2.1.4
};

}

32 ITERATORS

Via a public inheritance, these names are visible and usable in all derived
classes.

2.1.3 Distances
In the examples on pages 6 ff, the required position in the array was determined by
the difference of two pointers or iterators. In C++, the difference of a subtraction of
pointers is represented by the data type ptrdiff_t which is defined by the header
<cstddef>. However, the distance type may be different, dependent on the type of
the iterator. For this purpose, the appropriate data type for the distance between two
iterators can be chosen by the user. A standard function template distance() then
determines the distance.

With the predefined iterator-traits templates it is possible to derive the type names
needed, and the distance() function can be written as follows:

template<class InputIterator>

typename iterator_traits<InputIterator>::difference_type

distance(InputIterator First, InputIterator Second) {

// calculation
}

The calculation for iterators that work with a vector consists only of a subtrac-
tion. If the container is a singly-linked list, the calculation will consist of a loop
which counts the number of steps from the first iterator to the second.

The advantage of the traits templates is that only one type must be specified for
the instantiation of the distance()-template. The return type is a distance type
specified in the iterator_traits class. The traits classes allow definition of
the data type names such as difference_type both for complex iterators and for
basic data types such as int*.

How does this work in detail? The compiler reads the return type of distance()
and instantiates the iterator_traits template with the corresponding iterator.
Two cases must be distinguished:

• The iterator is of more complex nature, for example a list iterator. Then the sought
type iterator_traits<Iteratortype>::difference_type is identical
with Iteratortype::difference_type, as results from the evaluation of the
instantiated iterator_traits template. In the case of the singly-linked list of
page 12 this type results in ptrdiff_t.

• The iterator is a simple pointer, for example int*. For a pointer type, no names
such as difference_type can be internally defined via typedef. The speciali-
zation of the iterator_traits template for pointers now ensures that no ac-
cess is made to names of the iterator, because the required names can be found
directly in the specialization without having to pass through an iterator. Then
the sought type iterator_traits<Iteratortype>::difference_type is
identical with ptrdiff_t, as results from the evaluation of the instantiated spe-
cialized iterator_traits template.

ITERATOR PROPERTIES 33

Thus, distance() can be described very generally, as shown above. Without
the traits mechanism, there would have to be specializations for all the pointers, not
only for pointers to basic data types, but also for pointers to class objects.

advance()
In order to advance an iterator by a given distance, the function advance() can be
used:

template<class InputIterator_type, class Distance_type>

void advance(InputIterator_type& I, Distance_type N);

The iterator I is advanced by N steps. For iterators that can move forward and
backward (bidirectional iterators) N may be negative.

2.1.4 Categories
The STL provides different iterators for the container in question. Each of these
iterators can be assigned to one of the following five categories:

• input iterator

• output iterator

• forward iterator

• bidirectional iterator

• random access iterator

The categories correspond to the different capabilities of the iterators. For exam-
ple, an iterator responsible for writing into a sequential file cannot move backward.

A special kind of iterator used for inserting elements into containers will be
described in Section 3.5.

Input iterator
An input iterator is designed for reading a sequential stream of input data, that is,
an istream. No write access to the object is possible. Thus, dereferencing does not
supply an lvalue. The program fragment shows the principle of use:

// ‘SourceIterator’ is an input iterator
SourceIterator = Stream_container.begin();

while(SourceIterator != Stream_container.end()) {

Value = *SourceIterator;

// further calculations with Value ...
++SourceIterator;

}

34 ITERATORS

Because of the stream property of the container associated with the input iterator,
it is not possible to remember a special iterator value in order to retrieve an already
read object at a later stage. Input iterators are suitable only for a single pass.

Output iterator
An output iterator is designed for writing not only into a container, but also into a
sequential stream of output data (ostream). No read access to the object via deref-
erencing is possible. Dereferencing results in an lvalue which should exclusively be
used on the left-hand side of an assignment.

// ‘DestinationIterator’ is an output iterator

*DestinationIterator = Value;

++DestinationIterator; // advance

The two instructions are usually combined to

*DestinationIterator++ = Value;

If the output iterator works on a stream, advancing is already carried out by the
assignment. Then, the ++ operation is an empty operation and exists only for reasons
of syntactic uniformity (see also pages 43 and 63). Output iterators too are suitable
for only one pass. Only one output iterator should be active on one container – thus
we can do without comparison operations of two output iterators.

Forward iterator
As with the input iterator and the output iterator, the forward iterator moves forward.
In contrast to the iterators mentioned above, the values of this iterator may be stored
in order to retrieve an element of the container. This allows a multi-pass in one
direction. A forward iterator would, for example, be suitable for a singly-linked list.

Bidirectional iterator
A bidirectional iterator can do everything that a forward iterator can do. In addition,
it can move backward, so that it is suitable for a doubly-linked list, for example.
A bidirectional iterator differs from a forward iterator by the additional methods
operator--() (prefix) and operator--(int) (postfix).

Random access iterator
A random access iterator can do everything that a bidirectional iterator can do. In
addition, it allows random access, as is needed for a vector. Random access is im-
plemented via the index operator operator[](). One consequence of this is the
possibility of carrying out arithmetic operations, completely analogous to the pointer
arithmetic of C++.

A further consequence is the determination of an order by means of the relational
operators <, >, <=, and >=. In the following program, Position is a random access
iterator associated with Table, a vector container. n1 and n2 are variables of type
Distance_type (see page 32).

ITERATOR PROPERTIES 35

// Position is an iterator which points to a location somewhere inside Table
n1 = Position - Table.begin();

cout << Table[n1] << endl; // is equivalent to:
cout << *Position << endl;

if(n1 < n2)

cout << Table[n1] << "lies before "

<< Table[n2] << endl;

In the simplest case, Position can be of type int*, and n1 and n2 of type int.

2.1.5 Reverse iterators
A reverse iterator is always possible with a bidirectional iterator. A reverse iterator
moves backward through a container by way of the ++ operation. The start and end
of a container for reverse iterators are marked with rbegin() (points to the last
element) and rend() (fictitious position before the first element, an example follows
on page 52). Some containers provide reverse iterators. These iterators are realized
with the predefined class

template<class Iterator>

class reverse_iterator;

An object of this class is initialized with a bidirectional iterator or a random ac-
cess iterator, depending on the type of the template parameter. Internally, a reverse
iterator works with the initializing iterator and puts a wrapper with determined ad-
ditional operations around it. A new interface is created for an existing iterator, so
that it can adapt to different situations. For this reason, classes that transform one
class into another are called adaptors. A bidirectional iterator can move backward
with the -- operation. This property is used to move from the end of a container to
its beginning by means of a reverse bidirectional iterator using the ++ operation.

The iterator adaptor reverse_iterator also provides the member function
base() which returns the current position as a bidirectional iterator. base() is
needed to allow mixed calculations with normal and reverse iterators which work
on the same container:

container C; // any container type with public
// predefined types for iterators

typename container::iterator I = C.begin(); // start of C
// rbegin() points to the last element of C.
// rend() fictitious position before the first element.
typename container::reverse_iterator RI = C.rbegin();

// operations with the iterators, e.g. running backwards through it:
while(RI != C.rend()) {

// ... do something with (*RI)
++RI;

}

36 ITERATORS

// calculation of distance:
typename container::difference_type Distance =

distance(RI, I); // incorrect
// compiler error message:
// RI and I are not of the same type

typename container::difference_type Distance =

distance(RI.base(), I); // correct

There are two kinds:

• Reverse bidirectional iterator
This iterator can do everything that a bidirectional iterator can do. The only differ-
ence is the moving direction: the ++ operation of the reverse iterator has the same
effect as the -- operation of the bidirectional iterators and vice versa.

• Reverse random access iterator
This iterator can do everything the bidirectional reverse iterator described above
can do. In addition, the arithmetic operations +, -, +=, and -= allow you to jump
backward and forward several positions at a time in the container. In the above
example, distance() uses the ++ operation; with a random access iterator, how-
ever, it uses arithmetic. Thus, you can write:

Distance = RI.base() - I;

The application of a reverse iterator is shown on page 52. Application of iterator
categories in connection with containers and examples will be discussed only after
the introduction of the different types of containers (Section 3.4).

2.1.6 Const iterators

The standard containers also provide iterators of the type const_iterator and
const_reverse_iterator. These iterators are comparable to a pointer to const,
e.g. const char*: they are not const but cannot be used to modify an element.

2.1.7 Tag classes

Each iterator of the STL is equipped with one of the following tags which can also
be employed in the users’ own programs. The tags are predefined as follows:

struct input_iterator_tag {};

struct output_iterator_tag {};

STREAM ITERATORS 37

struct forward_iterator_tag

: public input_iterator_tag {};

struct bidirectional_iterator_tag

: public forward_iterator_tag {};

struct random_access_iterator_tag

: public bidirectional_iterator_tag {};

2.2 Stream iterators
Stream iterators are used to work directly with input and output streams. The fol-
lowing sections show how stream iterators are employed for reading and writing
sequential files. Stream iterators use the << and >> operators known from standard
input and standard output.

2.2.1 Istream iterator
The istream iterator istream_iterator<T> is an input iterator and uses opera-
tor>>() for reading elements of type T with the well-known properties that ‘white
space,’ that is spaces, tabs, and line feeds are ignored when in front of an element and
are interpreted as separators when between two elements. Otherwise, all characters
of the input stream are interpreted according to the required data type. Erroneous
characters remain in the input and lead to endless loops, if no error treatment is
incorporated.

During its construction and with each advance using ++, the istream iterator reads
an element of type T. It is an input iterator with all the properties described in Sec-
tion 2.1.4. At the end of a stream, the istream iterator becomes equal to the stream
end iterator generated by the default constructor istream_iterator <T>(). A
comparison with the stream end iterator is the only way of determining the end of a
stream. The following very simple program reads all character strings separated by
white space from a file (istring.cpp in the example) and outputs them line by line:

// k2/istring.cpp
#include<fstream>

#include<iostream>

#include<iterator>

#include<string>

using namespace std;

int main() {

// defining and opening of input file
ifstream Source("istring.cpp");

istream_iterator<string> Pos(Source), End;

/*The iterator End has no association with Source because all iterators of a type
which indicate the past-end position are considered to be equal.

*/

38 ITERATORS

if(Pos == End)

cout << "File not found!" << endl;

else

while(Pos != End) {

cout << *Pos << endl;

++Pos;

}

}

Character strings are represented by the standard data type string. At first sight,
the basic data type char* might have been used as well, but there is a hitch to it:
the iterator tries to read an object of type char*, but it is not possible to allocate
memory to this object, and so the program will probably ‘crash.’More complex typestip
are possible, as will be shown in the next section. End is generated by the default
constructor (with no arguments), and Pos is the iterator associated with the Source
stream. The first read operation is already executed during construction with the
istream argument, so that the subsequent dereferencing in the while loop always
results in a defined value for the character string which is then written to the standard
output.

Structure of an istream iterator
It is possible to write an istream iterator with special properties which inherits
from the istream_iterator class. An example can be found in Chapter 10. To
show the methods usable by derived classes and the way of functioning as well,
a possible implementation for an istream iterator is shown. The template parameter
char_traits defines different types for different types of characters (char or wide
characters), quite in analogy to the already known traits classes for iterators.

namespace std {

// possible implementation of an istream iterator

template<class T,

class charT = char,

class traits = char_traits<charT>,

class Distance = ptrdiff_t>

class istream_iterator :

public iterator < input_iterator_tag, T, Distance,

const T*, const T&> {

public:

typedef charT char_type;

typedef traits traits_type;

typedef basic_istream<charT,traits> istream_type;

friend bool operator==(

const istream_iterator<T, charT, traits, Distance>&,

const istream_iterator<T, charT, traits, Distance>&);

STREAM ITERATORS 39

/*The constructor already reads the first element (if present). The private method
read() (see below) uses the >>-operator.

*/
istream_iterator(istream_type& s)

: in_stream(&s) {

read();

}

// The default constructor generates an end-iterator
istream_iterator() : in_stream(0) {}

// copy constructor, assignment operator and destructor omitted!

const T& operator*() const { return value; }

const T* operator->() const { return &(operator*()); }

istream_iterator<T, charT, traits, Distance>&

operator++() {

read();

return *this;

}

istream_iterator<T, charT, traits, Distance>

operator++(int) {

istream_iterator<T, charT, traits, Distance> tmp

= *this;

read();

return tmp;

}

private:

istream_type *in_stream;

T value;

/*If the stream is all right and not empty, an element is read with read(). The
check (*in_stream) calls the type conversion operator void* of the class
basic_ios to yield the stream state.

*/

void read() {

if(in_stream) { // stream defined?
if(*in_stream) // stream all right?

*in_stream >> value;

if(!(*in_stream)) // set undefined, if necessary
in_stream = 0;

}

}

};

40 ITERATORS

Two istream iterators are equal when both point to the same stream or to the end
of a stream, as shown by the equality operator:

template<class T, class charT, class traits, class Distance>

bool operator==(const istream_iterator<T, charT, traits,

Distance>& x,

const istream_iterator<T, charT, traits,

Distance>& y) {

return x.in_stream == y.in_stream;

}

template<class T, class charT, class traits, class Distance>

bool operator!=(const istream_iterator<T, charT, traits,

Distance>& x,

const istream_iterator<T, charT, traits,

Distance>& y) {

return !operator==(x, y);

}

} // namespace std

2.2.2 Ostream iterator
The ostream iterator ostream_iterator<T> uses operator<<() for writing ele-
ments. This iterator writes at each assignment of an element of type T. It is an output
iterator with all the properties described in Section 2.1.4.

Consecutive elements are normally written with << directly into the stream, one
after the other and without separators. Most often, this is undesirable because the
result is often unreadable. To avoid this, the ostream iterator can at its construction
be equipped with a character string of type char* which is inserted as a separator
after each element. In the example on page 43, this is \n which is used to generate a
line feed after each output.

In contrast to the example on page 37, the data type to be read and written is to be
slightly more complex than string. Therefore, the task is now to read all identifiers
from a file, according to the convention of a programming language, and to write
them line by line into another file. Identifiers shall be defined as follows:

• An identifier always starts with a letter or an underscore ‘_’.

• Each following character occurring in an identifier is either alphanumeric (that is,
a letter or a digit) or an underscore.

Thus, it is evident that an identifier cannot be read with the usual >> operator.
Instead, we need an operator which considers these syntax rules and, for example,
ignores special characters. Furthermore, an identifier must be able to contain a cer-
tain number of characters. This is guaranteed since the standard C++ string class is

STREAM ITERATORS 41

used. An identifier should be able to be output with the usual << operator. With this
information, we can already construct a simple class for identifiers:

// k2/identify/identif.h
#ifndef IDENTIF_H

#define IDENTIF_H

#include<iostream>

#include<string>

class Identifier {

public:

const std::string& toString() const { return theIdentifier;}

friend std::istream& operator>>(std::istream&, Identifier&);

private:

std::string theIdentifier;

};

The method toString() allows you to generate a copy of the private variable
which can be read and modified without affecting the original. The comparison op-
erators are not really needed here but, on the other hand, containers are supposed
to be comparable, which assumes that the elements of a container are comparable
too. The comparison operators ensure that objects of the Identifier class can be
stored in containers.

inline bool operator==(const Identifier& N1,

const Identifier& N2) {

return N1.toString() == N2.toString();

}

inline bool operator<(const Identifier& N1,

const Identifier& N2) {

return N1.toString() < N2.toString();

}

std::ostream& operator<<(std::ostream&, const Identifier&);

#endif

In order to find the beginning of an identifier, the implementation of the input
operator in the file identif.cpp first searches for a letter or an underscore.

// k2/identify/identif.cpp
#include"identif.h"

#include<cctype>

std::istream& operator>>(std::istream& is, Identifier& N) {

std::istream::sentry s(is);

if(!s) return is;

42 ITERATORS

/*The constructor of the sentry-object carries out system dependent work. In par-
ticular, it checks the input stream so that in case of error, we can terminate the >>
-operator immediately (see Kreft and Langer (2000)).

*/

std::string IDstring;

// find beginning of word
char c = ’\0’;

while(is && !(isalpha(c) || ’_’ == c))

is.get(c);

IDstring += c;

/*When the beginning is found, all following underscores and alphanumeric char-
acters are collected. ‘White space’ or a special character terminates the reading
process.

*/

// collect the rest
while(is && (isalnum(c) || ’_’ == c)) {

is.get(c);

if(isalnum(c) || ’_’ == c)

IDstring += c;

}

/*The last character read does not belong to the identifier. The iostream library offers
the possibility of returning an unused character to the input so that it is available
to a subsequent program.

*/
is.putback(c); // back into the input stream

N.theIdentifier = IDstring;

return is;

}

Implementation of the output operator is very easy; the internal string variable
of an identifier is copied to the output os:

ostream& operator<<(ostream& os, const Identifier& N) {

std::ostream::sentry s(os);

if(s)

os << N.toString();

return os;

}

For ostream::sentry s(os) the same applies as for istream::sentry

s(is) (see above). That is all that is needed to use stream iterators to recognize
identifiers. The main() program which stores the list of identifiers in the file idlist
uses the above Identifier class and is surprisingly short.

// k2/identify/main.cpp
#include<iterator>

STREAM ITERATORS 43

#include<fstream>

#include"identif.h"

int main() {

// defining and opening of input and output files
std::ifstream Source("main.cpp");

std::ofstream Target("idlist");

std::istream_iterator<Identifier> iPos(Source), End;

// please note the separator string ‘\n’:
std::ostream_iterator<Identifier> oPos(Target, "\n");

if(iPos == End)

std::cout << "File not found!" << std::endl;

else

while(iPos != End) *oPos++ = *iPos++;

}

The last line of the above program is only an abbreviated form of the following
block:

{

Identifier temp = *iPos; // dereferencing
++iPos; // read new identifier

*oPos = temp; // write temp
++oPos; // do nothing

}

Looked at more closely, the ++ operation for the ostream iterator is superfluous,
because it is already the assignment that calls operator<<(), thus triggering the
write process. ++oPos actually causes nothing. There is, however, a good reason
why operator++() has been incorporated into the ostream iterator: the notation of
the line

while(iPos != End) *oPos++ = *iPos++;

can thus be exactly as it is used with pointers to basic data types. This C++ idiom
will be discussed again in Section 3.5.

Structure of an ostream iterator
It is even possible to write an ostream iterator with special features which inherits
from the ostream_iterator class. To show the usable methods for derived classes
and the way how they work, a possible implementation of the ostream_iterator
is shown. The template-parameter char_traits defines different types for different
kind of characters (char or wide characters).

namespace std {

template<class T, class charT=char,

class traits=char_traits<charT> >

44 ITERATORS

class ostream_iterator :

public iterator <output_iterator_tag, void, void,

void, void> {

public:

typedef charT char_type;

typedef traits traits_type;

typedef basic_ostream<charT,traits> ostream_type;

ostream_iterator(ostream_type& s)

: out_stream(&s), delim(0) {

}

ostream_iterator(ostream_type& s,

const charT* separator)

: out_stream(&s), delim(separator) {

}

// copy constructor and destructor omitted

// assignment operator:
ostream_iterator<T,charT,traits>&

operator=(const T& value) {

*out_stream << value;

if(delim) { // put out separator?

*out_stream << delim;

}

return *this;

}

// operators only for idiomatic notation, for example = *iter++

ostream_iterator<T,charT,traits>& operator*() {

return *this;

}

ostream_iterator<T,charT,traits>& operator++() {

return *this;

}

ostream_iterator<T,charT,traits>& operator++(int) {

return *this;

}

private:

ostream_type* out_stream;

const char_type* delim; // for separation of output elements
};

} // namespace std

